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ABSTRACT

Abstract

A specified-profile, global analysis code has been developed to evaluate the
performance of fusion reactor designs. Both steady-state and time-dependent cal-
culations are carried out; the results of the former can be used in defining the
parameters of the latter, if desired. In the steady-state analysis, the performance
is computed at a density and temperature chosen to be consistent with input limits
(e.g., density and beta) of several varieties. The calculation can be made at either
the intersection of the two limits or at the point of optimum performance as the
density and temperature are varied along the limiting boundaries. Two measures
of performance are available for this purpose: the ignition margin or the confine-
ment level required to achieve a prescribed ignition margin. The time-dependent
calculation can be configured to yield either the evolution of plasma energy as a
function of time or, via an iteration scheme, the amount of auxiliary power re-
quired to achieve a desired final plasma energy.

Classification: 19.9 Magnetic Confinement
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PROGRAM SUMMARY

Title of program: ASPECT

Catalog number:

Program obtainable from: Daren Stotler, PPPL (Internet: dstotler@theory.pppl.gov)

Computers: CRAY-2, CRAY-YMP, Sun SPARC2;Installations: National En-
ergy Research Supercomputing Center (NERSC), Lawrence Livermore Labora-
tory; Theory workstation cluster, PPPL.

Operating systems: UNICOS, Sun OS

Programming language used: FORTRAN

Memory required: 152000 words

Number of bits in a word: 64

Number of processors used: 1

Peripheral used: disk

Number of lines in distributed program: 7923

Keywords: thermonuclear fusion, tokamak reactor, specified-profile transport

Nature of physical problem
The purpose of this code is to provide a quick, if largely empirical, assessment
of the performance of a tokamak fusion reactor [1,2]. ASPECT first performs a
steady-state analysis at a point in the density - temperature operating space de-
termined according to a set of user-specified criteria. The code then carries out a
time-dependent calculation which can be used to address, for example, auxiliary
heating requirements and helium ash buildup.

Method of solution
For the steady-state portion of the calculation, the individual terms in the global
power balance equation are estimated using user-specified radial plasma profiles.
An expression for the energy confinement time is required; a number of popular
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forms are included in the code. The power balance equation is solved using a
Brent algorithm subroutine [3]. The reactor performance is quantified using either
the ignition margin parameter or the level of confinement required to achieve a
specified ignition margin.

For the time-dependent calculation, the temporal variation of the device parame-
ters, the relative plasma density, and the relative auxiliary power must be input. A
feedback procedure for limiting the total heating power in the plasma is available.
Helium ash accumulation can be included with an adjustable global confinement
time. The time-dependent global plasma evolution equations are integrated using
Hindmarsh’s LSODE algorithm [4]; this yields the plasma energy as a function of
time. The integration can be iterated (via the Brent algorithm subroutine [3]) to
determine the level of auxiliary input power required to reach a specific plasma
energy at a certain time.

Restrictions on the complexity of the problem
Although ASPECT is designed for use with tokamak reactors, it should be ap-
plicable to any toroidal reactor device. It is limited, however, in that it considers
only closed flux surfaces; this implies that the cross-section of devices with sepa-
ratrices are modeled approximately. The behavior of the scrape-off layer plasma
is not considered either. A limit of some sort on the total heating power resulting
from plasma-wall interactions would be desirable [5]. The code is also restricted
in that it cannot treat time-varying profiles.

Typical running time
1 – 7 CRAY-2 CPU seconds.

Unusual features of the program
The steady-state calculation provided by ASPECT is considerably more flexible
than that provided by similar programs. The ability to solve for the required aux-
iliary power within the time-dependent calculation is also noteworthy.
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LONG WRITE-UP

1. Introduction

Over the last several years, simple global performance calculations[1–9] have
been used to aid in the design of future tokamak fusion reactors. Given informa-
tion about the parameters of the device, and some assumptions about the plasma
(e.g., plasma shape, radial density and temperature profiles, quality of energy con-
finement, plasma composition), these codes can determine the fusion yield. These
programs are generally small and fast, and are thus suitable for incorporation into
larger, more ambitious codes. A primary drawback to the global approach is that
there is no general theoretical basis for predicting the plasma parameters or the
level of energy confinement. Instead, extrapolations from present empirical data
must be made.[2, 10] More detailed scenarios for reactor operation can be ob-
tained by solving the radial transport equations.[11, 12] While the assumptions
made in these sorts of calculations are of a more fundamental nature, they as of yet
have no firm theoretical foundation either (although some progress has been made
recently; see, for example, Ref. 10). Because of the larger size and greater de-
tail of radial transport codes, however, they are generally unsuitable for extensive
scans of reactor parameter space, a frequent application of global performance
codes.

We will describe here theASPECTcode. ASPECTis an acronym for Ad-
vanced Specified-Profile Evaluation Code for Tokamaks. By “specified-profile”
we mean that the user determines on input the radial profiles of the plasma den-
sity and temperature. The code is intended to “evaluate” tokamak reactor de-
signs, providing some estimate of their performance. We describe the code as
“advanced” because of the greater number of options available to the user in com-
parison with related codes.[1–10] This program was developed so that it could
serve as a plasma performance subroutine within a much larger engineering sys-
tems code; we discuss here the stand-alone version of theASPECTcode.

This global analysis program consists of two largely distinct parts. In both
halves, the user must provide some information about the radial plasma profiles,
the plasma composition, and the level of energy confinement. The first half solves
a steady-state power balance equation to obtain a unique operating point (i.e.,
plasma density and temperature). The user also selects a pair of operational limits
which delineate limiting boundaries in density and temperature space. Examples
of limits incorporated into the code thus far are limits on: density, beta (defined as
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the ratio of the plasma to the magnetic pressure), heating power, and temperature.
The reactor performance can either be evaluated at the intersection of these limit-
ing boundaries, or the parameter space can be scanned to determine the optimum
performance within the limits. The performance of the reactor may be quantified
by the ignition margin (at a given confinement level) or by the confinement level
required to achieve a specified ignition margin.

The second half of the code solves a time-dependent generalization of this
same power balance equation. The results of the steady-state calculation are in-
corporated into the time-dependent portion by default. However, the input for this
half of the program is provided via a separate namelist and may be specified in-
dependently. Two modes of operation are available to the user. In the first, the
time-dependent equation is integrated a single time, yielding the plasma energy
as a function of time during the discharge. In the second, the integration process
is iterated upon with various values of the auxiliary heating power, allowing the
code to solve for the auxiliary heating power required to achieve a specified value
of the plasma energy at the end of the integration. An equation for the helium
ash level is integrated simultaneously so that issues such as ash build-up can be
addressed; typically, however, a constant ash concentration is assumed, and this
feature is disabled.

A feedback loop can be used to modulate the applied auxiliary heating power
so that the total heating power remains below some maximum value. The defini-
tion of total heating power is chosen on input from three possibilities.

The rest of this document is organized as follows. The global analysis model
will be discussed in detail in Sec. 2; various aspects of the model are described
in individual subsections. The capabilities and operation of both halves of the
code are outlined in Sec. 3. A number of special properties of our global model
that allow the steady-state and time-dependent equations to be solved numerically
in a convenient manner are presented in Sec. 4. A sample run of theASPECT
code, including input and output, is contained in Sec. 5. The input variables are
discussed in the first two appendices. The functions and subroutines which make
up ASPECTare briefly described in App. C. Appendix D provides the user with
guidance on how to use the information contained in the error number provided
by the steady-state part of the code in unsuccessful calculations. Finally, a rough
outline of the subroutine calling sequence is presented in App. E.
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2. Global Analysis Model

Global analysis codes typically solve a steady-state power balance equation
similar to

P� + POH + Paux = Pcon + Prad: (1)

The individual terms represent the volume-integrated contributions made to the
total power balance by alpha, ohmic, and auxiliary heating; thermal conduction
and radiated losses are on the right-hand side. The steady-state portion of our code
will focus on this equation.

Equation (1) is just a special case of a more eneral expression that includes
the time-dependence of the plasma energyWtot. It requires only a little extra
effort to consider at the same time the potentially important effect of helium ash
accumulation. Hence, we will examine in the time-dependent portion of our code
the following coupled set of equations,

dWtot

dt
= �Pcon � Prad + P� + POH + Paux; (2)

dNHe

dt
= Cash

 
P�

kBE�
� NHe

�p;He

!
: (3)

The various terms in Eqs. (1) and (2) will be described in Sec. 2.3. In Eq. (3),NHe

is the total number of helium ash particles in the plasma,E� = 3:5�103 keV is the
alpha birth energy,kB = 1:6021�10�16 J / keV is Boltzmann’s constant, and�p;He

is the (constant) helium ash particle confinement time. The overall multiplierCash

is used to enable and disable this feature in the analysis. Equation (3) assumes that
the slowing down of fast alpha particles takes place instantaneously. In reality,
the alpha slowing-down time in a reactor is expected to be on the order of 0.1 s
(depending on plasma parameters).

2.1. Shape Dependent Quantities

The shape of the plasma is described by the elongation� and triangularityÆ.
They are primarily used in computing the plasma volume, cross-sectional area,
and safety factor. In particular, the coordinates of the plasma boundaryRb andzb
are assumed to be

Rb = R+ a cos (� + Æ sin �) ; (4)

and
zb = �a sin �; (5)
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whereR and a are the plasma major and minor radii, respectively, and� is a
poloidal angle parameter (not the true poloidal angle). Note that these expres-
sions cannot describe a separatrix. Consequently,� andÆ are usually interpreted
as being the elongation and triangularity of the95% flux surface in a diverted
tokamak geometries.

The plasma cross-sectional areaAx and volumeV are computed numerically
from the integrals

Ax � 2
Z �a

0
dz

Z a

�a
dx; (6)

and
V � 2

Z �a

0
dz

Z a

�a
2�Rb dx; (7)

wherex � Rb �R.
The cylindrical equivalent safety factor is calculated using the expression[8]

qcyl =
�a2BT

�0IpR
[1 + �2(1 + 2Æ2 � 1:2Æ3)]; (8)

whereBT is the toroidal magnetic field,Ip is the plasma current, and�0 is the
permeability of free space. An alternative estimate of the cylindrical safety factor,
often referred to as the engineering safety factor, is given by

qeng =
�a2�BT

�0IpR
: (9)

Incorporating in an approximate fashion the effects of finite aspect ratio yields
an estimate of the MHD safety factor at the95% flux surface

q95 ' qcyl
1:17� 0:65a=R

[1 � (a=R)2]2
: (10)

In some instances, it is desirable to specifyq95 and have the code determine
the value ofIp. In these cases,qcyl is computed from

qcyl =
q95
CIp

[1� (a=R)2]
2

(1:17 � 0:65a=R)
; (11)

whereCIp is an adjustable coefficient (= 1 by default) used to calibrate this ex-
pression to the results of a numerical equilibrium. The code then inverts Eq. (8)
to obtainIp.
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2.2. Profile Shapes

Codes such asASPECTare zero-dimensional (0-D) in that no radial transport
equation is solved. However, they are more correctly referred to as specified-
profile since the plasma profiles are all specified on input. Presently, there are
two generic forms for these profiles in our code. The first assumes a parabolic
dependence of the density, temperature, and plasma current density on radius,

Y = Y0(1 � r2=a2)�Y ; (12)

whereY is replaced byn, T , andJ , respectively;r is the local minor radius. The
profile shapes are then determined by the input values of�n, �T , and�J .

The other profile form attempts to mock-up the effects of frequent sawtooth os-
cillations[13] which tend to flatten the profiles inside of the mixing radiusrmix �
rq=1 (q is the MHD safety factor). Nonzero pedestals at the plasma edge are also
allowed with this form. A linear behavior is assumed between theq = 1 surface
and the edge:

Y =

(
Y0 0 < r < rmix

(Y0 � Yedge) (a� r)=(a� rmix) + Yedge rmix < r < a;
(13)

The subscript “0” (“edge”) will be used to designate the value atr = 0 (r = a).
These trapezoidal profiles are used for density and temperature; the current density
is taken to beJ / T 3=2 as one would expect in resistive equilibrium with classical
resistivity.

A third option combines the parabolic density variation with the trapezoidal
temperature profile. Interpretations of empirical profile data have progressed in
such a way as to make this combination particularly easy to calibrate.[10]

A number of integrals over these profiles are computed prior to the start of
the main calculations. It is assumed for this purpose that all flux surfaces have the
same elongation and are concentric. The resulting “form factors” appear in the ex-
pressions for the terms in Eqs. (1) and (2) provided in Sec. 2.3. For parabolic pro-
files these integrals can, with one exception, be performed analytically. Namely,
we define

gline =
1

a

Z a

0
dr

n(r)

n0
; (14)

gn =
2

a2

Z a

0
r dr

n(r)

n0
; (15)
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! 1

1 + �n
;

gnT =
2

a2

Z a

0
r dr

n(r)T (r)

n0T0
; (16)

! 1

1 + �n + �T
;

gn2Th =
2

a2

Z a

0
r dr

"
n(r)

n0

#2 "
T (r)

T0

# 1

2

; (17)

! 1=(1 + 2�n +
1

2
�T );

gJ =
2

a2

Z a

0
r dr

J(r)

J0
; (18)

! 1

1 + �J
;

gohmic =
2

a2

Z a

0
r dr

"
J(r)

J0

#2 "
T (r)

T0

#� 3

2

; (19)

! 1=(1 + 2�J � 3

2
�J ):

The arrows indicate the values obtained with parabolic profiles.
Throughout this document, we will make use of the following notation for a

volume integral:

hfi � 2

a2

Z a

0
r dr f(r): (20)

In particular, when discussing density we will usually refer to the volume-averaged
electron densityhnei. Likewise, we will use the density-weighted, volume-averaged
temperaturehT idw � hnT i=hni when considering the plasma temperature. Note
that throughout these calculations we assume that the electron and ion tempera-
tures are equal,Te = Ti � T . In terms of these average quantities and the above
form factors, the central values for the density and temperature are given by

T0 = hT idw gn
gnT

; (21)

and

n0 =
hni
gn

: (22)
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2.3. Power Formulas

In this subsection, we consider in detail each of the terms in Eq. (2). The alpha
power is computed using

P� = C�E�
2V

a2

Z a

0
r dr nDnT�vDT ; (23)

whereC� is a constant multiplier (usuallyC� = 1). The reactivity,�vDT , is
calculated with a formula obtained by Hively [Eq. (5) of Ref. 14] in order to
ensure correct results in all temperature regimes. Consequently, this integral must
be computed numerically for each value ofhT idw.

The ohmic heating power is (all units are MKS with temperatures in keV;
exceptions will be noted)

POH = COH1:65 � 10�9Zeff�e
NCT
�3=2
0 J2

0V gohmic; (24)

whereCOH is a constant multiplier (COH = 1 normally),Zeff is the effective
charge,

�e = 37:8 � ln(hnei 12 =hT idw) (25)

and is the Coulomb logarithm,
NC is the neoclassical resistivity enhancement
factor (taken to be a constant,= 2:5). The central current densityJ0 is given by

J0 =
Ip

AxgJ
: (26)

Both bremsstrahlung and synchrotron radiation are included inPrad = Pbrem+
Psync. We take

Pbrem = Cbrem1:68 � 104(ne0=10
20)2(T0=10)

1=2ZeffV gn2Th; (27)

where againCbrem is an arbitrary multiplier, usually set to one. For the syn-
chrotron radiation, we use an expression developed by Trubnikov[15],

Psync = Csync6:214 � 10�17hneihT idwB2
T�V: (28)

The yield coefficient� is written in the form

� =
Gsyncp

�

q
(1 �R);
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where

Gsync = 5:198 � 10�3hT i
3

2

dw

0
@1 + 22:61

a

RhT i
1

2

dw

1
A

1

2

;

and
p
� = 7:78� 10�9

 hneia
BT

! 1

2

;

R is the wall reflectivity. For most applications,Psync � Pbrem (providedR is
not too different from unity, as is expected); hence,Psync is usually excluded from
the calculation by settingCsync = 0.

Finally, the conducted losses are written as

Pcon = Ccon
Wtot

�E
; (29)

where the total thermal plasma energy is given by

Wtot =
3

2
kBhneihT idw

�
1 +

ni
ne

�
V: (30)

Again, the overall multiplierCcon = 1 by default. The next subsection will discuss
expressions for�E.

2.4. Energy Confinement Time Formulas

It has been standard practice over the last several years to treat ohmic con-
finement (�OH) differently than that found in auxiliary heated experiments (�aux).
A smooth connection has been postulated[16] for the transition between the two
regimes

�E =
�
��2OH + ��2aux

�� 1

2 : (31)

Since this choice for the exponent “2” has no firm theoretical basis, our code
allows a more general expression,

�E = [(c�1�OH)
x� + (c�2�aux)

x� ]1=x� : (32)

In the limit of an infinitely sharp transition Eq. (32) becomes

�E = min(c�1�OH ; c�2�aux): (33)
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This form is also available in the code and is used for�aux expressions which
have been fit to data that include ohmic and low (as well as high) auxiliary power
discharges.[17, 18] Such expressions should be capable of describing the confine-
ment behavior for all heating regimes. In this case, we take the minimum with
�OH solely in order to obtain reasonable behavior in regimes where we would not
expect�aux to be accurate [for example, when the net input powerPin ! 0; Pin
is defined in Eq. (46) below].

The arbitrary multipliersc�1 andc�2 (variablecctaue in the code) have been
inserted in the above equations to allow greater versatility in the usage of existing
scaling expressions. For example, it has been found that the confinement times
in H-mode operation scale roughly as a constant times the corresponding L-mode
value (typicallyc�2 � 2; see, for example, Ref. 10 and references therein). This
allows predictions of H-mode behavior to be made in advance of the development
of well-established H-mode scalings. The choice of the�E scaling expressions to
be used in Eq. (32) or (33) is made via the input variables`�1 and`�2 (ltaue in
the code); the values associated with each scaling are given below.

Of course, the code also permits single scaling expressions to be used by them-
selves. One must take care when using auxiliary heated scalings in this manner to
avoid regions of very lowhT idw; not doing so could lead to very largePOH , small
P�, and consequently unphysical results.

We will now list the available scaling expressions in the present version of the
code. The only ohmic scaling is the neo-Alcator formula, obtained with`�i = 1,
(see, for example, Ref. 8 and references therein)

�NA = 7 � 10�22neaR
2qcyl; (34)

wherene is the line-averaged electron density (see Sec. 2.5). While other ohmic
scalings may work as well, the ohmically heated behavior of reactors is of rel-
atively little importance in comparison with the auxiliary heated performance.
Consequently, there has not been a great deal of effort expended recently to re-
fine and unify�OH scalings. We find it expedient to utilize Eq. (34) in all cases,
eliminating this degree of freedom from the problem.

There have beenmanyL-mode scalings presented in the literature. The few we
include explicitly in the code have enjoyed more widespread use than the others.
We first list the power law formulas, starting with the Goldston expression[16]
(`�i = 4)

�G = 6:432 � 10�8
 
Ai

1:5

!0:5

�0:5Ip(10
2a)�0:37(102R)1:75P�0:5

in : (35)
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The mass scaling (Ai, average ion mass in AMU) was added some years after the
original publication.

A more careful analysis of a larger database led to the Kaye-Goldston scal-
ing[19] (̀ �i = 3),

�KG = 10�7:56�0:28B�0:09
T

�
Ip
103

�1:24� ne
1019

�0:26 �
102a

��0:49

�
�
102R

�1:65 Aip
2

!0:5�
Pin
106

��0:58
: (36)

This regression was revised a few years later, resulting in the neo-Kaye ex-
pression[18] (̀�i = 2)

�nK = 0:0617
�
Ip
106

�1:12
R1:3a�0:04�0:28B0:04

T

�
�
ne
1020

�0:14
A

0:5
i

�
Pin
106

��0:59
: (37)

A scaling was developed by the T-10 group[18] (`�i = 9) is used in our code,

�T�10 = 0:09aRBTA
0:5
i �0:5p0:08OH

�
Pin
106

��0:4
; (38)

where

pOH = Z2
eff

�
Ip
106

�4 �
aRq3cyl�

1:5
��1

(39)

is an empirical scaling for the ohmic heating power.
While working with the extensive ITER L-mode database, Kaye developed

several new scalings. Two were designated as “complex”, referring to the compli-
cated regression procedure used in the analysis[18]. One included all tokamaks in
the database and was correspondingly labeled Kaye-All-Complex (`�i = 5),

�KAC = 0:0521A
0:5
i �0:25

�
Ip
106

�0:85� ne
1019

�0:1
B0:3
T a0:3R0:85

�
Pin
106

��0:5
: (40)

The other treated only the larger tokamaks in the database and was named Kaye-
Big-Complex (̀ �i = 6),

�KBC = 0:082A
0:5
i �0:25

�
Ip
106

�0:85� ne
1019

�0:1
B0:3
T a0:8R0:5

�
Pin
106

��0:5
: (41)
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With the development of the ITER L-mode database, the choice of regression
variables and their units became standard. Consequently, it is convenient to incor-
porate into our code a general scaling expression (`�i = 8) based on these standard
variables,

�txp = t1A
t2
i �

t3

�
Ip
106

�t4 � ne
1019

�t5
Bt6
T a

t7Rt8

�
Pin
106

�t9
: (42)

The exponentst1 ! t9 are specified on input. With this scheme, we have been
able to utilize easily any of a large number of L-mode and H-mode scalings in our
calculations.

Two offset-linear scalings are sufficiently popular to warrant inclusion in the
code’s repetoire. The generic form for an offset-linear scaling is�aux = �inc +
W0=Pin; formulas must be provided for both�inc, the incremental confinement
time, andW0 which has the units of energy. The Odajima-Shimomura expression
(`�i = 10) is given by[20]

�inc;OS = 0:085�a2A
0:5
i

W0;OS = 0:069 � 106
Ip
106

�
ne
1019

�0:6
B0:2
T R1:6a0:4�0:2A

0:5
i GOS ; (43)

where

GOS = Z0:4
eff

�
15 � Zeff

20

�0:6 " 3qcyl(qcyl + 5)

(qcyl + 2)(qcyl + 7)

#0:6
: (44)

The other offset-linear expression was developed by Rebut-Lallia[21] (`�i =
11),

�inc;RL = 0:017
Ip
106

L1:5A
0:5
i Z�0:5

eff

W0;RL = 0:206 � 106
�
ne
1020

�0:75�
BTAi

Ip
106

�0:5
L2:75Z0:25

eff ; (45)

whereL = (Ra2�)1=3 is an average size parameter.
One other option is available to the user:�E = �th = constant (̀�i = 7). This

can be used by itself or with some other scaling [in Eq. (32) or Eq. (33)]. In the
latter case, the constant confinement time forms a prescribed lower bound below
which �E cannot fall.

We usually write for the (net) input power used in the confinement scalings
the heating power minus the bremsstrahlung radiated power,

Pin = P� + POH + Paux � Prad: (46)
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We do not include here, nor in Eqs. (1) or (2), the impurity line radiation arising
from incompletely stripped impurity ions. In a reactor, this type of radiation is
expected to appear only in the cool edge plasma and should not affect the core
plasma confinement. Furthermore, since corrections for impurity line radiation
are not usually made in performing regression analyses on the energy confinement
time, its effects are in a sense built into the empirical scalings for�E. So, we
include in our expression forPrad only radiation mechanisms which give rise to
centrally peaked losses.

By subtracting direct core plasma losses from the heating power when com-
putingPin, Pin becomes the net power flowing into the “good confinement” zone
between the core and the edge of the plasma. This practice is standard in 0-D
calculations[1–3, 8] and has some basis in more detailed simulations[22].

Physically, it is more satisfying for�E to depend on purely thermodynamic
plasma parameters (ne andWtot). This is the sort of form one would expect to de-
rive from a transport theory in which the fluxes are all determined by local plasma
parameters (rather than the total power flow; see, for example, Ref. 22). We can
use Eq. (1) to convert expressions like the ones presented above into functions of
ne andWtot. First, consider a single power law scaling

�E(Pin) = f�P
�

in ; (47)

wheref� contains all of the nonpower dependence (including the multiplierc� ).
Using the definition ofPcon and Eq. (46) forPin, Eq. (1) becomes

Pin =
Wtot

�E
: (48)

Inserting Eq. (47) into Eq. (48) and solving forPin yields

Pin =

 
Wtot

f�

!1=(1�
)

: (49)

Substituting back into Eq. (47), we obtain finally

�E(Wtot) =
�
f�W

�

tot

�1=(1�
)
: (50)

An analogous procedure applied to an offset-linear scaling of the form

�E(Pin) = c�

�
�inc +

W0

Pin

�
(51)
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yields

�E(Wtot) =
c��incWtot

Wtot � c�W0
: (52)

Since scaling expressions are based upon nearly steady state data[18] for which
dWtot=dt� Pin, the energy and power forms fit the database equally well. Hence,
there are no empirical reasons to choose one over the other. When the plasma is
not in steady state, however, the two forms of�E yield different values ofdWtot=dt
[from Eq. (2)]. In particular, the power form of�E can nearly double the time re-
quired to add a specified increment to the plasma energy relative to that needed
with the energy form of the confinement time.[1]

2.5. Density Relations

All species are taken to have the same radial profile (discussed in Sec. 2.2).
Using the definitionsne �P

j Zjnj and

Zeff �
P

j Z
2
j nj

ne
(53)

(the sums are performed over all ionic speciesj with chargeZj and densitynj) at
fixed hnei, Zeff andnHe=ne, and assuming one impurity of chargeZ, we obtain
the relations

nD + nT
ne

=
1

Z � 1

�
Z � Zeff � 2(Z � 2)

nHe

ne

�
; (54)

nZ
ne

=
1

Z2

�
Zeff � nD + nT

ne
� 4

nHe

ne

�
; (55)

and

ni
ne

� nD + nT
ne

+
nHe

ne
+
nZ
ne

: (56)

A fixed ratio of nD=(nD + nT ) is used to compute the deuterium and tritium
densities from(nD + nT )=ne.

Three different empirically derived expressions for the tokamak density limit
have been incorporated into the code. The oldest of these is the Hugill limit[23]

ne;max = h
BT

Rqcyl
1020m�3: (57)
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Values of the line-averaged density are converted to volume-averages using the
profile form factorgline,

n = hnigline=gn: (58)

Greenwald[24] examined a large amount of data from several different toka-
maks and concluded that the expression

nGreenwalde;max =
Ip
�a2

1020m�3 (59)

did the best job of bringing the data into line; Marfes appeared at about 60 –80%
of this value. On the other hand, JET beam-heated discharges were found to be
limited by[25]

nJETe;max =
2BT

Rqeng
1020m�3: (60)

This limit also worked reasonably well for ohmically heated cases with pellet
injection[25].

The most recent evidence (see, for example, Refs. 26–29) indicates that the
density limit should actually be a function of input power, as would be appropriate
for a density limit caused by excessive impurity radiation. Formulas of this type
have not been incorporated into the code as yet.

2.6. Plasma� Values

The thermal plasma beta is given by the familiar expression

�th =
2�0
B2
T

hneikBhT idw
�
1 +

ni
ne

�
: (61)

To find the contribution due to fast alphas��, we make use of the formulas in
Refs. 30 and 31. The critical alpha energy at which heating of the background
ions equals that of the electrons is given by

Ecrit = 59:2hT idw
0
@X

j

Z2
j nj�j

ne�eAj

1
A

2

3

= 59:2hT idw
 ��

nD
nD + nT

�D

AD
+
�
1 � nD

nD + nT

�
�T

AT

�
nD + nT

ne

+
nZ
ne

Z2�Z

AZ

�
=�e

! 2

3

: (62)
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For simplicity, we approximate the atomic mass of the impurity ion asAZ ' 2Z;
of course,AD = 2 andAT = 3. The ion Coulomb logarithms are calculated
using[30]

�j = 45:5 + ln

2
4
 hT idw
hnei

!1

2 A�Aj

A� +Aj

3
5 ; (63)

whereA� = 4; the electron Coulomb logarithm is given by Eq. (25).
Having found this critical energy, we compute a critical velocity ratio

v�
vcrit

=
�
E�

Ecrit

� 1

2

: (64)

We also need the slowing-down time

�s = 0:371

 hT idw
10

! 3

2

 
1020

hnei

!�
17

�e

�
: (65)

The average fast alpha energy (in Joules) is then calculated using

E� =
kBE�

2

 
1 �

�
vcrit
v�

�2 (1
3
ln

"
1 + (v�=vcrit)

3

(1 + v�=vcrit)
3

#

+
1p
3

"
2 tan�1

 
2v�=vcrit � 1p

3

!
+
�

3

#)!
: (66)

The time for the fast alphas to thermalize is

�th =
�s
3
ln

"
1 +

�
v�
vcrit

�3#
: (67)

Finally, defining the alpha source rate densityS� � P�=(E�V ), we can write
down expressions for the fast alpha density

n� = S��th; (68)

and the fast alpha�

�� =
2�0
B2
T

2

3
E�S��s: (69)

The total plasma beta is then

� = �th + ��: (70)
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The above expressions are all valid locally. Strictly speaking, we should com-
pute the volume-averaged�� by integrating Eq. (69) over radius since each of
S�, E�, and�s depend onr. Instead, we have for simplicity inserted the volume-
averaged quantities everywhere in Eq. (69). A few comparison calculations indi-
cate that the error incurred is negligible.

Limits on beta are calculated using the Troyon scaling[32, 33]

�max = g�
Ip=106

aBT
10�2; (71)

where the Troyon coefficientg� � 2 – 3 typically.

3. Code Capabilities

The ASPECT code is divided into two logically distinct pieces. The first con-
siders Eq. (1) and determines an optimum operating point according to a user-
specified criterion. In the second half, the time-dependent behavior is considered.
By default, the code incorporates information from the steady-state analysis. But,
in general the plasma conditions, and even the machine parameters, can be differ-
ent in the two calculations.

Summaries of the input variable names, their default values, and their meaning
in the calculations are given in Appendices A and B. A documented sample run
is presented in Sec. 5. Here, we describe the effects of the input variables in more
detail.

3.1. Steady-State Performance

The choice of density limit is determined bynmurak . If nmurak = 1, the
Hugill expression for the maximum density is used [Eq. (57);h represents the
input variablehugill ]. Likewise, if nmurak = 2, the Greenwald [Eq. (59)]
limit is utilized; if nmurak = 3 the JET [Eq. (60)] expression is employed. If
nmurak = 4, the maximum volume-averaged electron density is specified on input
by the variabledenmax.

The second variable,npwr , provides another limiting surface inhnei - hT idw
space, giving the code enough information to uniquely determine an operating
point (that is a particular set ofhnei andhT idw). If npwr = 1, P� is required to be
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� xpalmx. Similarly, if

npwr =

8><
>:

3; P� + Paux � xpalmx;
4; P� + Paux + POH � xpalmx;
5; P� + Paux + POH � Prad � xpalmx:

If npwr = 2, it is assumed thathT i is limited to� tkvmax. If npwr takes any
other value (e.g., 0), the total plasma� is forced to remain� �max [Eq. (71)].

A final possible combination of the two switches involves settingnmurak to
something other than 1, 2, 3, or 4 (e.g., 0). In this case, the limit specified by
npwr is used to determine the maximum density andtkvmax sets the maximum
hT idw.

The code is capable of either computing the performance at the intersection
of the two limits specified bynmurak andnpwr or scanning along the limit-
ing boundaries to find an optimum operating point. To obtain the former, the
user would setnoptm = 0. By using any other value (e.g.,noptm = 1), the
optimization is carried out. As will be demonstrated in Sec. 4, reactor perfor-
mance is usually maximized by operating at the highest density allowed. Hence,
by scanning along the limits inhnei - hT idw space, one can obtain the optimum
performance over the whole operating space. If the chosen confinement scaling is
such that this assumption is violated, the performance will always be computed at
the intersection of the limits.

The objective of the steady-state calculation is determined by the switchncig .
If ncig 6= 0 (e.g.,ncig = 1), the code solves for the confinement multiplierc�
needed to achieve a specified ignition marginxmi . We define the ignition margin
by

MI � P�
Pcon + Prad

: (72)

This is related to the more familiarQ � Pfus=(Paux + POH) (the fusion power
Pfus = 5P�) by

Q =
5MI

1 �MI
: (73)

The ignition margin is preferred since it is well-behaved in the ignited regime
(MI � 1).

The confinement multipliers are defined according to Eqs. (32) and (33). If
there is only one scaling for�E, there is no possibilty for confusion. If there
are two scalings, the multiplier on the second scalingc�2 is solved for. That is,
it is assumed that the two components of Eq. (32) or (33) are indeed an ohmic
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and an auxiliary heated scaling. The multiplier then represents the confinement
enhancement factor required with the specified�aux to reach the inputMI .

If no scalings are specified,�E is taken to be a constant. Then,c� = �E=�th,
where�E is the confinement time required to achieveMI = xmi, and�th is a
user-specified constant confinement time (given by the variabletauth ).

An upper bound ofc� = 10 is used during the solution procedure; this value is
chosen on physical rather than numerical grounds (see Sec. 4). Note in particular
that during an optimizing search overhT idw, there may be at lowhT idw no finite
value ofc� for whichMI = xmi (e.g.,P� � Prad < 0). At such points, we set
c� = 10 and proceed with the search. As long as more reasonable values can be
obtained at higherhT idw, this causes no problem.

If ncig = 0, the code uses the input specification(s) forc� and computesMI

in the manner desired.
In all cases, the value of�E required to achieveMI = 1,

�ig =
CconWtot

max[(P� � Prad); 1W]
;

is also determined. Note that atMI = 1, Paux = �POH , not Paux = 0 as is
usually assumed at ignition. This is a trivial point, but is of some importance in
the time-dependent calculations.

3.2. Time-Dependent Performance

In the simplest situation (nfindp = 0), this part of the code integrates Eq. (2)
as a function of time using initial conditions and time-dependent parameters spec-
ified on input. The result of the calculation is the plasma energy (in effect, the tem-
perature since the density evolution is prescribed) as a function of timet between
initial and final timestinit andtf , respectively. The input parameters are chosen
via a second namelist that is independent of the first. In fact, the time-dependent
portion can analyze a device that is completely different from that considered in
the steady-state part of the code.

If nfindp 6= 0 (e.g.,= 1), the code iterates onPaux to determine the value
required to achieve a desired final energyWtot;f at timetf . SincePaux is in gen-
eral time-dependent, the code actually determines its maximum valuePaux;max;
the input array representing the auxiliary power is renormalized after input so that
it can be used as[Paux=Paux;max] (t) (the same prescription holds fornfindp = 0
except that the user specifiesPaux;max). By default,Wtot;f is taken to be the total
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thermal energy at the operating point calculated by the steady-state portion of the
code. In this way, the steady-state calculation can determine an optimum den-
sity and temperature, and the time-dependent analysis can compute the auxiliary
power required to get there in a specified amount of time. Note that output is
produced only for the final value ofPaux;max.

Helium ash accumulation is controlled by the variablecash [Cash in Eq. (3)].
If Cash = 0, the time-evolution of the helium ash concentrationnHe=ne(t) is
specified by the input arrayarnane(i) . If Cash 6= 0, an initial number of helium
ionsNHe;0 (xnhein ) is assumed to be present at the start of the calculations,
and Eq. (3) is integrated to determine the time evolution ofNHe. Note that if
Cash 6= 0, solving forPaux;max (nfindp 6= 0) may give unreliable results and is
not recommended.

The level of auxiliary power can be modulated via a feedback loop to limit the
total input power, as was done in the steady-state part of the code withnpwr . In
this case, settingnfdbak = 1, 2, or 3 forcesPaux + P�, Paux + P� + POH , or
Paux+P�+POH�Prad, respectively, to be� Pin;max (xpinmx on input). When
3 � npwr � 5, nfdbak is defaulted tonpwr�2, andPin;max is set toxpalmx+0:3
MW; the additional 0.3 MW provides a little “headroom” to allowPaux;max to be
determined more easily whennfindp 6= 0. If nfdbak is something other than
1, 2, or 3, no feedback is performed. Time-delay problems make it difficult to
maintainP� = constant via feedback;[34] hence, that option is not available.

The input time-dependent waveforms consist of several time breakpoint arrays
and one or more parameter value arrays for each. For example, the arraytbk(i)
provides the time breakpoints fora(t), R(t), �(t), andÆ(t); the latter are input
via armin(i) , armaj(i) , aelong(i) , andatring(i) , respectively. The
number of breakpoints is given byntbk , which must be� 30 given the present
array dimensions. In some instances, it may be desirable to specify a particular
qcyl(t) evolution.[35] If so,a(t) andR(t) are calculated fromqcyl(t) and Eq. (8)
[input viaaqcyl(i) ] by assuminga(t)+R(t) = ass+Rss, where the subscript
“ss” denotes the value used in the steady-state calculation.

Density-related parameters are controlled bytnbk(i) , 1 � i � ntnbk; the
associated parameters arehnei=hneift(t) [adenav(i) ], Zeff (t) [azeff(i) ],
andnHe=ne(t) [arnane(i) ]. Note that determininghnei(t) requires two pieces
of information. Following the namelist read statement,hnei=hneift(t) is renor-
malized to a maximum value of 1. The maximum or “flattop” densityhneift is
specified by the variabledenflt . Thus, the density computed in the steady-state
part of the code can be incorporated into the time-dependent calculation via the
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default settinghneift = hneiss while still allowing an arbitrary time-dependence.
Time breakpoints for the plasma currentIp(t) [acurnt(i) ] and toroidal

field BT (t) [abtor(i) ] are given by the arraytibk(i) , 1 � i � ntibk.
Time-dependent confinement multipliersc�j(t) (j = 1, 2) can be specified via
actaue(i,j) according to the time breakpoints set inttbk(i) , 1 � i �
nttbk.

The value ofPaux(t) is specified in much the same way ashnei(t). The overall
time-dependence is prescribed byapaux(i) with time breakpointstpbk(i) ,
1 � i � ntpbk; this array is renormalized to have a maximum value ofPaux;max

(xpaumx ). If nfindp 6= 0, Paux;max is varied so that the plasma energy achieves
Wtot;f at tf . Also, if feedback is invoked withnfdbak = 1, for example, and
P�(t) + Paux(t) > Pin;max, Paux(t) is reset toPin;max � P�.

The routineLSODE[36] is used to integrate Eqs. (2) and (3); the Adams
predictor-corrector scheme (chord method with numerically calculated Jacobian)
is employed. Actually, three equations are integrated. The third computes the
diagnosticWheat defined as[10]

Wheat(t) �
Z t

tinit
dt (P� + Paux + POH) : (74)

This represents the integrated power input to the plasma and is thus related to
the total heat deposited onto the divertor or limiter targets. In order to obtain a
conservative estimate of the actual heat transmitted to the target, radiation isnot
subtracted here.

As LSODE proceeds, it calls a subroutine that evaluates the right-hand sides
of the equations fordWtot=dt, dNHe=dt, anddWheat=dt at a particular timet.
A linear interpolation scheme is applied to obtain parameter values whent falls
between the input breakpoints. If the number of breakpoints is set� 1 or if t <
the first breakpoint time, the first value in each associated parameter array is used.
Likewise, if t extends beyond the last time breakpoint, the parameter value at that
last breakpoint is employed.

The present defaults are similar to those described in the BPX Physics Design
Description[10]. The plasma current is ramped up linearly overtramp = 7:5 s;
the beginning of the current ramp is designated ast = 0: The toroidal field is
ramped up much more slowly; a bilinear waveform is assumed. The actual values
are given in App. B. At the end of the flattop (t = tramp + tburn = 17:5 s),
Ip(t) andBT (t) fall linearly to 0 andzztf3 � BT;ss, respectively, att = tramp+
tburn+ tdump = 25 s (zztf3 is defined in App. B).
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The minor radius is taken to have its full value fort � 1:5 s up through the
end of the flattop. The evolution ofa(t) at earlier times is generally complicated.
Hence, most of our simulations begin att = 1:5 s. For completeness, a simple
linear ramp froma(t = 0) = 0 is prescribed. The default plasma elongation
is brought up from70% of its flattop to value to100% betweent = 1:5 s and
t = tramp. Similarly, the default triangularity increases from20% to 100% of
its flattop value during the same period. We arbitrarily set the values of these
two parameters att = 0 to be�(t = 0) = 1 and Æ(t = 0) = 0: During the
shutdown,a(t) andÆ(t) fall linearly to 0; over this same period,�(t) drops to
1. The default major radius is chosen so that with the above-prescribeda(t),
a(t) + R(t) = ass + Rss. This is required for the outer edge of the plasma to
remain in contact with the ICRH antenna.

By default, the plasma density rises linearly from 0 during the current ramp-
up, and drops back down to 0 during the shutdown. Each ofZeff (t) = Zeff;ss,
[nHe=ne] (t) = [nHe=ne]ss, �th(t) = �th;ss, andc�i(t) = c�i;ss are by default con-
stant and take on the values assigned in the steady-state calculation.

The input array describingPaux=Paux;max(t) is defaulted to 0. Nonetheless,
the actual default prescription for the time-dependence of the auxiliary power is
nontrivial. Unless some element of the input arrayapaux(i) > 0, the code uses
the toroidal field evolution to estimate the radius of the ICRH resonance layer,

rres = R(t)

"
1� BT (t)

BT;max

#
: (75)

We assume that the radial variation of the magnetic field is given byBT (r) /
1=[R(t) � r] (the resonance point moves out in major radius as the toroidal field
increases), and that the resonance layer is at the magnetic axis whenBT achieves
its maximum valueBT;max. If rres > a(t)=2,Paux is set= 0. For resonance layers
inside this radius, the heating efficiency is taken to be equal to the relative density
at the layer:[37]

Paux
Paux;max

� ne(rres)

ne(0)
: (76)

Thus, during the flattop, heating will be100% efficient.

4. Basic Properties of the Model

There are several analytically derived properties of this model that allow the
solutions to Eq. (2) to be obtained numerically in a convenient fashion.
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First consider a situation in which we are solving for the value ofc� required
to achieve a certainMI (ncig 6= 0). From Eq. (1) and the definition of the ignition
margin, Eq. (72),

Paux = (P� + POH)
1�MI

MI
: (77)

This expression enables us to solve Eq. (1) directly for the value ofc� (which
enters intoPcon through the definition of�E) by eliminating the unknownPaux.

In cases where the power form of�aux is being used, we can go one step further
and obtain a reasonable lower bound on the solutionc� . Namely, if we knowPaux,
we can computePin [Eq. (46)] for a givenhnei and hT idw. The code can then
evaluate the auxiliary heated confinement time�aux. By definingc

0

� � �E=�aux,
the code can easily calculate that in steady-state

c
0

� =
Wtot

Pin�aux
: (78)

From Eq. (32),�E � c��aux, thus

c
0

� � c� (79)

is a lower bound for the desired solutionc� . The Brent algorithm[38] used to solve
Eq. (1) also requires an upper bound be specified for the solution. Since we do
not expect confinement times�E � �aux (e.g., H-mode confinement is presently
about twice as good as L-mode), we set an upper boundc� � 10.

In cases where the code is solving forPaux at a givenc� , one bound on the
solution can be obtained using the quantitiesPin;0 andPaux;0 defined as

Pin;0 � P� + POH � Prad (80)

and

Paux;0 � Wtot

�E(Pin;0)
� Pin;0: (81)

We can write down an similar expression forPaux using Eqs. (1) and (46),

Paux =
Wtot

�E(Pin;0 + Paux)
� Pin;0: (82)

Comparing Eqs. (81) and (82), and assuming increased input power degrades con-
finement, we have

Paux

(
>
<

)
Paux;0 for Paux

(
>
<

)
0: (83)
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These expressions provide an upper or lower bound forPaux, depending on its
sign. A subtlety of this procedure is that the decision of which case applies must
be based onPaux;0 since the sign ofPaux is not known a priori. But, it can be
shown that as long asd[Pin�E]=dPin > 0 for all Pin, Paux � Paux;0 > 0.

The optimization procedures used in the steady-state part of the code assume
that reactor performance improves monotonically with increasing electron den-
sity. We will now outline the conditions under which this assumption is valid.

Defining


 � �@ ln �aux
@ lnPin

; (84)

and

� � @ ln �aux
@ lnhnei ; (85)

it can be shown that

@MI

@hnei

�����
c�

=
MI

hnei
Pcon

Pcon + Prad

"
1 � 2
 + � + 2 (�aux=�NA)

x�

1� 
 + (�aux=�NA)
x�

#
: (86)

Furthermore,

@c�
@hnei

�����
MI

= � c�
hnei [1� 2
 + �+ 2 (�aux=�NA)

x� ] : (87)

Of course, for a simple power law scaling,
 and� are just the exponents onPin
andhnei. Thus, we can see that all of the power law scalings listed in Sec. 2.4
(except neo-Kaye) yield

@MI

@hnei

�����
c�

> 0 (88)

and
@c�
@hnei

�����
MI

< 0: (89)

The same is typically true for the offset linear scalings discussed in Sec. 2.4.
Specifically, the requirement is that�E < 3:5�inc for the Shimomura-Odajima
scaling and�E < 5�inc for Rebut-Lallia.

Thus, regardless of whether the code is solving for the maximumMI at a given
c� or the minimumc� at a givenMI , the optimum density at any value ofhT idw
is the largest density allowed by the specified limits. The code then need only
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scanhT idw along this limiting boundary to determine the optimum performance.
Optimization is not allowed when neo-Kaye scaling or an externally specified
scaling with1 � 2
 + � < 0 (i.e., 0:5 + txp(9) + 0:5txp(5) < 0) is requested.
It can also be shown that the extremum ofMI on the limiting boundary occurs at
the samehT idw as does that ofc� . Namely,

@MI

@hT idw

�����
c�

= 0) @c�
@hT idw

�����
MI

: (90)

5. Sample Run

In this section, we discuss the input and output from a typical run of the AS-
PECT code. This case represents a reference operating point for BPX[10].

The format of the file shown in Fig. 1 is appropriate for use with namelist
input under the UNIX operating system. All characters on a line after a “!” are
ignored; this facility makes it possible to document the input file as shown below.
The name of the input file must beplsinp ; both namelists are read from this
file.

There are a few items of particular interest in this input file.

� Settingcip = 0: allows the value ofIp to be read in throughcurma .

� The subroutineSTRIPX will remove everything in a line after a “! ”. This
allows the input file to be commented in the manner shown.

� The 1989 ITER-P L-mode scaling[39] is used here. Note that the comments
are particularly convenient in helping the reader remember which exponents
go with which variables.

� The namelists are terminated by$end .

� In the second namelist, all time-dependent variables have their default val-
ues except forhnei=hneimax andPaux=Paux;max. The flattop density is taken
from the result of the steady-state calculation.

� We setdtout = 0:5 s to make insertion of the output in this document
easier. If the time-dependent output is to be plotted, a smaller value (e.g.,
dtout � 0:2 s) would be more desirable.
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The steady-state calculation write its output to a file calledplsout following
an “echo” of the input file. The results obtained from the sample run are presented
in Fig. 2.

We should point out that

� The currentIp is shown since it is calculated ifcip 6= 0.

� The second line provideshnei (in m�3) andhT idw (in keV).

� The third and fourth lines contains the power levels in Eq. (1),P�, Pbrem,
Pcon, Psync, Paux, andPOH , in that order. All are in watts.

� The fifth line gives the total beta, the beta due to fast alpha particles, and the
energy confinement time�E (in seconds).

� In the sixth line the computed values forc� (an input in this case),MI , and
�ig (in seconds) are presented.

� Finally, the last line shows the error parameter; it equals zero for a succesful
calculation. The meaning of nonzero values is discussed in Sec. D.

The time-dependent calculation produces columnar output in the filetdout ;
the output obtained with the sample input file is presented in Fig. 3. From left to
right the columns represent: the time during the discharget (in seconds),hnei (in
units of1020 m�3), hT idw (in keV),P�,Paux,POH ,Pcon,Prad = Pbrem+Psync (all
in mega-watts),Wtot (in mega-joules),(nD+nT )=ne, andWheat (in mega-joules).
No graphics are produced directly by theASPECTcode; we instead format this
output so that it can be easily “pasted” into a graphing or spreadsheet application
running on an Apple Macintosh computer. A plot produced using this data is
shown in Fig. 4.

The value ofPaux;max and the value ofWtot(tf) at are listed separately at the
end of the file for clarity.
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Appendix A. First Namelist Input Variables

Variables input via the first namelist control the steady-state calculation. They
are described in the following table. The first column gives the variable name. Its
default value and units are given in the second column. If assigned a symbol in
the text, it is indicated in the third column; the equation or section in which it is
defined (if applicable) is shown in the fourth column. The last column provides a
brief description.

You can find this table and the one associated with the next appendix at
the end of the document.
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Appendix B. Second Namelist Input Variables

The variables in the second input namelist control the time-dependent cal-
culation. They are described in the following table. The first column gives the
variable name. Its default value and units are given in the second column. If as-
signed a symbol in the text, it is indicated in the third column; the equation or
section in which it is defined (if applicable) is shown in the fourth column. The
last column provides a brief description. Some of the defaults for this namelist are
specified by variables. Some of these will correspond to input parameters from
the first namelist. Others will refer to values determined during the steady-state
calculation; these are denoted by a subscript “ss”. Second namelist variables ap-
pearing in the default specification of another variable will take on their default
values during the calculation. A handful of externally defined variables appear in
the default specifications of the field ramps for historical reasons. Their names
and corresponding values are:zztf2 = 0:748, zztf3 = 0:593, zztf4 = 0:889,
tramp = 7:5 s,tdump = 7:5 s,tnull = tramp=1:9445, andtburn = 10: s.
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Appendix C. Functions and Subroutines

The following is a list of the subroutines included in theASPECTcode and a
brief description of their purpose. Note that the routines beginning withPL are
part of the steady-state calculation, while those starting withTD form the time-
dependent part. More details can be found in the internal documentation of the
code.

RUNPLSSets defaults, reads namelist, and initiates calculations.

PLMAIN Controls steady-state calculations.

PLHEREEvaluates performance at maximumhnei andhT idw allowed by limits.

PLOPTMSearcheshT idw to determine optimum performance allowed by limits.

PLMICT GivenhT idw, evaluates limitinghnei and computes performance.

PLFMI Calculates the ignition marginMI .

PLCTAUCalculates the confinement time multiplierc� required to achieve the
specifiedMI .

PLFNDNFinds maximumhnei within the prescribed limits.

PLBETC Computes�th + �� � �max.

PLPHTCEvaluates the difference between the actual and limiting heating pow-
ers.

PLPRT2 Auxiliary routine for PLPHTCto differentiate forms for the heating
power.

PLPOWCDetermines difference between power inputs and losses.

TDMAIN Controls time-dependent calculations.

TDELW Integrates differential equation to findWtot(tf).

TDWDOTEvaluatesdWtot=dt, dNHe=dt, anddWheat=dt.

TDWJ Dummy function forLSODE.
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TDGET Determines plasma parameters at a given time.

TDPAUXEvaluates the auxiliary power at a given time.

TDINTP Linearly interpolates input waveforms between time breakpoints.

SLSODEPackage containing Hindmarsh’s LSODE subroutine[36].

In addition a library of utility routines is used. This library, calledPOPHYS,
includes:

BRENT Determine the minimum of a function using Brent’s method. [38]

EVBETA Evaluates� quantities and fast alpha to electron density ratio.

EVTAUE Evaluates the energy confinement time.

PALPHA ComputesP� based on Hively’s fit.[14]

SETCON Sets commonly used constants.

SETFRM Computes profile form factors.

SETPOW Calculates nonconduction terms in the power balance.

SIMPSN Calculates a definite integral using Simpson’s rule.

STRIPX Strips comments following “!” from input files.

VOLARE Computes volume, cross-sectional area, surface area, and arc length.

ZBRENT Finds root of a function using Brent’s method.[38]

Appendix D. Error Codes

The error code reported in the output following a failed steady-state calcu-
lation contains information about the origin of the error condition. In fact, the
code is a string of digits, one for each routine in the subroutine calling chain
(see App. E). The rightmost digit corresponds to the routine highest in the chain
(PLMAIN). The leftmost digit is generated by the routine responsible for initiat-
ing the error condition. The value of each digit indicates which error checking
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statement in that routine detected the error. In the code, these can be identified
by searching for assignments of the variablekerr . Thus, one can track down an
error by back-tracking along the calling chain, using the error code to locate the
problem in each subroutine.

In the time-dependent calculation, specific error messages are provided in the
output.

Appendix E. Calling Sequence

The following outline provides a general description of the logic of the code
and the order in which the routines are called. For simplicity, many details are left
out here. But, enough information is provided to allow the reader to answer any
further questions by referring to the code itself. Subroutines not listed here are
elementary enough in their function that no detail beyond the descriptions given
in App. C is necessary.

Main Program

A. Call STRIPX

B. Call RUNPLS:

1. Set defaults.

2. Read first namelist.

3. CallVOLARE

4. CallPLMAIN

5. Write steady-state output.

6. CallTDMAIN

7. Return

C. Stop

PLMAIN

A. Call SETCON

B. Call SETFRM

C. CalculateIp, qcyl.

D. Evaluate�max [Eq. (71)],hneimax [Eqs. (57), (59), and (60)].
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E. CallPLHERE(noptm = 0) or PLOPTM(otherwise)

F. Return

I. PLHERE

A. If 1 � nmurak� 4, sethnei = hneimax, and

1. If npwr = 1 or 3 � npwr � 5, useZBRENTto solvePLPHTC = 0:
for hT idw,

2. Else ifnpwr = 2, sethT idw = tkvmax (input),

3. Else, useZBRENTto solvePLBETC= 0: for hT idw.

B. Else, sethT idw = tkvmax (input), and

1. UsePLFNDNto solve forhnei.
C. CallPLMICT

D. Return

II. PLOPTM

A. Bracket a minimum ofPLMICT betweenhT idw = 1 keV andtkv-
max.

B. UseBRENTto solve for minimum inPLMICT) hT idw.

C. Return

III. PLFNDN

A. Sethnei = hneimax;

1. If noptm 6= 0, andhnei is belowspecified power or� limit, Re-
turn.

B. If npwr = 1 or 3 � npwr � 5, solvePLPHTC= 0: for hnei,
C. Else, useZBRENTto solvePLBETC= 0: for hnei.
D. Return

IV. PLMICT

A. If noptm 6= 0, then

1. If 1 � nmurak� 4, andnpwr = 2, sethnei = hneimax.
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2. Else, usePLFNDNto solve forhnei.
B. Call SETPOW

C. If ncig 6= 0, c� = PLCTAU(MI),

D. Else,MI = �PLFMI(c� ).
E. Return

V. PLCTAU

A. EvaluatePaux(MI) [Eq. (77)].

B. If npswtc 6= 0, evaluate lower bound forc� [Eq. (78)],

C. Else, set lower bound toc� = 0:1.

D. UseZBRENTto solvePLPOWC = 0.

E. Return

VI. PLFMI

A. If 3 � npwr � 5, may have determinedPaux in solvingPLPHTC= 0:,

1. EvaluatePLPOWC.

2. If PLPOWC < 103 W, Return.

B. EvaluatePaux;0 [Eq. (81)].

C. Use as upper or lower bound, depending on sign ofPaux;0.

D. UseZBRENTto solvePLPOWC = 0: for Paux.

E. CalculateMI [Eq. (72)].

F. SetPLFMI = �MI (use “-” sinceBRENTsolves for minimum).

G. Return

VII. PLBETC

A. Evaluate� [Eq. (70)].

B. SetPLBETC = � � �max.

C. Return

VIII. PLPHTC

A. Call SETPOW
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B. If npwr = 1, setPLPHTC = P� � xpalmx,

C. Else,

1. CallPLPRT2:

a. If npwr = 3, P2 = POH + xpalmx,

b. If npwr = 4, P2 = xpalmx,
c. Else (npwr = 5), P2 = xpalmx+ Prad.

2. If ncig = 1,

a. SetP1 = P�=MI .
b. SetPLPHTC = P1 � P2.

3. Else,

a. SetP1 = P� + POH .
b. SetPaux = P2 � P1.

c. SetPLPHTC = PLPOWC(Paux).

4. Return

IX. PLPOWC

A. CalculatePin [Eq. (46)].

B. Set�E = EVTAUE(Pin).

C. EvaluatePcon [Eq. (29)].

D. SetPLPOWC = Pcon + Prad � (P� + POH + Paux).

E. Return

TDMAIN

A. Set defaults.

B. Read second namelist.

C. Rescale density waveform.

D. If nfindp = 0, evaluateWtot(tf) usingTDELW(Paux;max) (setWtot;f =
0:),

E. Else, useZBRENTto solveTDELW = 0.

F. Return

I. TDELW
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A. CalculateWtot andNHe at tinit from input.

B. Loop over output time-steps�t:

1. CallLSODEto integrateTDWDOTover next�t.

2. Write output if this is the last call toTDELW.

C. SetTDELW = Wtot(tf)�Wtot;f .

D. Return

II. TDWDOT

A. Call TDGET

B. Call SETPOW

C. UseTDPAUXto evaluatePaux.

D. Limit Paux by feedback if needed.

E. CalculatePin [Eq. (46)].

F. Set�E = EVTAUE(Pin).

G. EvaluatePcon [Eq. (29)].

H. CalculatedWtot=dt, dNHe=dt, dWheat=dt [Eqs. (2), (3), and (74), re-
spectively].

I. Return

III. TDGET

A. UseTDINTP to evaluate�, Æ, Zeff , hnei, nHe=ne, BT , Ip, �th, c�j at
present time-stept.

B. If aqcyl(i) specified, useqcyl(t) to seta, R [Eq. (8)],

C. Else, useTDINTP to evaluatea, R.

D. Call VOLARE

E. If cash 6= 0, setnHe

ne
= NHe

V hnei
.

F. Return

IV. TDPAUX

A. If first call, rescalePaux waveform, determineBT;max.
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B. If time dependence ofPaux specified, useTDINTP to evaluatePaux at
present time-stept,

C. Else, evaluatePaux [BT (t)=BT;max] according to default prescription
[Eq. (76)].

D. Return
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Figures

Fig. 1. Sample input file for a BPX reference discharge[10].

Fig. 2. Sample output from the steady-state calculation.

Fig. 3. Sample output from the time-dependent calculation.

Fig. 4. Plot of the time evolution of the various terms in Eq. (1) produced using
data from the sample run, a BPX reference discharge[10].
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$input
calpha = 1.0 ! Overall multiplier on P_alpha
cbrem = 1.0 ! " " " P_brem
ccon = 1.0 ! " " " P_con
coh = 1.0 ! " " " P_OH
csync = 0.0 ! " " " P_sync
cip = 0.0 ! Multiplier on I_p(q_95) expression

rminor = 0.795 ! Plasma minor radius (m)
rmajor = 2.59 ! " major " (m)
elong = 2.000 ! " elongation
xtring = 0.350 ! " triangularity
btor = 8.10 ! Toroidal magnetic field (T)
curma = 1.06e1 ! Plasma current (MA)

xpalmx = 6.39e7 ! Maximum heating power (W)
nmurak = 4 ! Maximum density is denmax
npwr = 4 ! Use xpalmx to limit P_alpha + P_aux + P_OH
ncig = 0 ! Calculate ignition margin
noptm = 1 ! Optimize choice of n and T
denmax = 5.e20 ! Maximum <n_e> (m**-3)

ltaue(1) = 1 8 ! Neo-Alcator & specified exponent tau_E scalings
cctaue(1) = 1. 1.85 ! Confinement multipliers
! ITER-P ’89 scaling exponents:
txp(1) = 0.0381 ! constant
txp(2) = 0.5 ! aibar
txp(3) = 0.5 ! elong
txp(4) = 0.85 ! curent (MA)
txp(5) = 0.1 ! deneln (1.e19 m**-3)
txp(6) = 0.2 ! btor (T)
txp(7) = 0.3 ! rminor (m)
txp(8) = 1.2 ! rmajor (m)
txp(9) = -0.5 ! Pinput (MW)
lctaue = 1 ! tau_E is minimum of the two pieces
npswtc = 0 ! tau_E is written in terms of plasma energy

aibar = 2.5 ! Average mass of ionic species
xzimp = 6.0 ! Impurity charge
xzeff = 1.65 ! Effective ion charge
rnane = 0.025 ! ratio of helium to electron density
rndndt = 0.5 ! ratio of D t o D + T density
resnc = 2.5 ! Neoclassical resistivity correction

lform = 3 ! Trapezoidal T, parabolic density profiles
nform = 101 ! Number of elements in radial profiles
alpn = 0.5 ! Density profile exponent
xtmix1 = 0.29 ! r_mix / a for temperature profile
$end
$tdlist
ttbk(1) = 0.0 27.5 ! Time breakpoints for confinement parameters

ntnbk = 6 ! Number of breakpoints in tnbk
tnbk(1) = 0.0 7.5 8.0 11.0 17.5 27.5 ! Breakpoints for density
adenav(1) = 0.0 0.5 0.5 1.0 1.0 0.0 ! Relative density values
ntpbk = 6 ! No. of breakpoints in tpbk
tpbk(1) = 0.0 7.95 8.05 22.45 22.55 27.5 ! Breakpoints for P_aux
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apaux(1) = 0.0 0.0 1.0 1.0 0.0 0.0 ! Relative P_aux values
nfindp = 0 ! Calculate Wtot(t)
nfdbak = 2 ! Feedback to maintain P_aux+P_alpha+P_OH < xpinmx
tfinal = 20.0 ! Time to end integration (s)
xpaumx = 20.0 ! Peak auxiliary power (MW)
xpinmx = 100.00 ! Feedback level (MW)
dtout = 0.5 ! Interval between output (s)
$end

FIG. 1
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current = 1.0600E+07 A
density = 1.9877E+20 m**-3, temperature = 9.6429E+00 keV
P-alpha = 4.1945E+07 W, P-brem = 7.7367E+06 W, P-con = 5.6163E+07 W
P-sync = 0.0000E+00 W, P-aux = 1.9955E+07 W, P-oh = 2.0001E+06 W
beta = 2.3303E-02, beta-alph = 1.2470E-03, tau-E = 9.5300E-01
c-tau = 1.8500E+00, ig. marg. = 6.5641E-01, tau-ig = 1.5647E+00
ierr = 0

FIG. 2
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t ne-avg Te-avg Palpha Paux Poh Pcon Prad Wtot f-DT Wheat
2.000 0.265 1.708 0.002 0.000 2.530 1.806 0.043 0.948 0.830 0.979
2.500 0.331 1.877 0.005 0.000 3.311 2.374 0.073 1.343 0.830 2.445
3.000 0.398 2.042 0.011 0.000 4.058 2.965 0.114 1.808 0.830 4.292
3.500 0.464 2.194 0.021 0.000 4.801 3.548 0.165 2.333 0.830 6.514
4.000 0.530 2.334 0.036 0.000 5.536 4.117 0.229 2.917 0.830 9.113
4.500 0.596 2.464 0.057 0.000 6.264 4.673 0.305 3.559 0.830 12.086
5.000 0.663 2.587 0.088 0.000 6.977 5.203 0.396 4.261 0.830 15.432
5.500 0.729 2.705 0.129 0.000 7.672 5.706 0.503 5.025 0.830 19.149
6.000 0.795 2.820 0.184 0.000 8.344 6.181 0.626 5.853 0.830 23.232
6.500 0.861 2.932 0.256 0.000 8.994 6.627 0.767 6.748 0.830 27.677
7.000 0.928 3.042 0.347 0.000 9.617 7.043 0.926 7.710 0.830 32.481
7.500 0.994 3.151 0.463 0.000 10.214 7.431 1.106 8.744 0.830 37.641
8.000 0.994 3.468 0.648 10.000 8.899 8.178 1.160 9.624 0.830 42.965
8.500 1.159 5.362 3.460 20.000 4.733 12.645 1.963 17.360 0.830 56.804
9.000 1.325 6.457 7.466 20.000 3.607 15.228 2.814 23.893 0.830 71.531
9.500 1.491 7.349 13.018 20.000 2.983 19.436 3.799 30.593 0.830 88.226

10.000 1.656 7.831 18.645 20.000 2.714 26.677 4.842 36.222 0.830 107.582
10.500 1.822 7.963 23.441 20.000 2.642 32.751 5.908 40.518 0.830 129.477
11.000 1.988 7.876 27.202 20.000 2.677 37.464 6.992 43.715 0.830 153.509
11.500 1.988 8.311 30.694 20.000 2.478 41.718 7.182 46.130 0.830 179.298
12.000 1.988 8.651 33.495 20.000 2.339 45.200 7.328 48.016 0.830 206.575
12.500 1.988 8.912 35.682 20.000 2.241 47.968 7.438 49.465 0.830 235.036
13.000 1.988 9.109 37.354 20.000 2.171 50.116 7.519 50.560 0.830 264.417
13.500 1.988 9.256 38.612 20.000 2.122 51.751 7.580 51.378 0.830 294.496
14.000 1.988 9.365 39.547 20.000 2.086 52.976 7.624 51.983 0.830 325.099
14.500 1.988 9.445 40.235 20.000 2.061 53.884 7.657 52.426 0.830 356.090
15.000 1.988 9.503 40.738 20.000 2.043 54.550 7.681 52.750 0.830 387.365
15.500 1.988 9.546 41.103 20.000 2.030 55.037 7.698 52.984 0.830 418.848
16.000 1.988 9.576 41.368 20.000 2.020 55.391 7.710 53.154 0.830 450.481
16.500 1.988 9.598 41.559 20.000 2.013 55.646 7.719 53.277 0.830 482.224
17.000 1.988 9.614 41.697 20.000 2.009 55.831 7.725 53.365 0.830 514.045
17.500 1.988 9.626 41.796 20.000 2.005 55.964 7.730 53.429 0.830 545.924
18.000 1.888 11.564 45.900 20.000 1.631 64.242 6.609 52.705 0.830 578.918
18.500 1.789 13.548 45.462 20.000 1.376 69.063 5.481 49.943 0.830 612.702
19.000 1.690 15.418 41.018 20.000 1.211 68.840 4.391 45.189 0.830 645.095
19.500 1.590 17.188 34.513 20.000 1.099 64.549 3.402 39.275 0.830 674.599
20.000 1.491 18.803 27.294 20.000 1.026 62.642 2.542 32.743 0.830 700.635

Max. Paux = 20.000 MW, Final Wtot = 32.743 MJ

FIG. 3
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Name Default (units) Symbol Eq. or Sec. # Description
aibar 2.5 (amu) Ai Sec. 2.4 average mass of ionic species
alpj 1.5 �j Eq. (12) current density profile exponent
alpn 0.5 �n Eq. (12) density profile exponent
alpt 1.0 �T Eq. (12) temperature profile exponent
btor 8.1 (T) BT Sec. 2.1 toroidal magnetic field
calpha 1.0 C� Eq. (23) overall multiplier onP�

cbrem 1.0 Cbrem Eq. (27) overall multiplier onPbrem

ccon 1.0 Ccon Eq. (29) overall multiplier onPcon

cctaue(j) 1.0 c�j Eq. (32) jth (j = 1, 2) confinement multiplier
cip 1.0 CIp Eq. (11) overall multiplier onIp(q95) expression
coh 1.0 COH Eq. (24) overall multiplier onPOH

csync 0.0 Csync Eq. (28) overall multiplier onPsync

curma 10.6 (MA) Ip Sec. 2.1 plasma current
denmax 5 � 1020 (m�3) Sec. 3.1 maximumhnei

elong 2.0 � Eq. (5) plasma elongation
gbeta 3.0 g� Eq. (71) Troyon coefficient
hugill 1.5 h Eq. (57) multiplier on Murakami form ofne;max

lctaue 0 Sec. 2.4 determines means of combining confinement
scalings,
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Name Default (units) Symbol Eq. or Sec. # Description
Eq. (32) = 0 ) use exponentxptaue ;
Eq. (33) otherwise) take minimum confinement scaling

lform 0 Sec. 2.2 controls specification of profile form factors,

= 1 ) parabolic profiles;

= 2 ) trapezoidal profiles;

= 3 ) trapezoidal temperature profile,
parabolic density;
otherwise) parabolic profiles;

> 0), averages are computed numerically
ltaue(j) 0 `�j Sec. 2.4 determinesjth (j = 1, 2) �E scaling expression,

Eq. (34) = 1 ) neo-Alcator;
Eq. (37) = 2 ) neo-Kaye;
Eq. (36) = 3 ) Kaye - Goldston;
Eq. (35) = 4 ) Goldston;
Eq. (40) = 5 ) Kaye-All-Complex;
Eq. (41) = 6 ) Kaye-Big-Complex;

= 7 ) constant =tauth ;
Eq. (42) = 8 ) specified exponents;
Eq. (38) = 9 ) T-10;
Eq. (43) = 10) Odajima-Shimomura;
Eq. (45) = 11) Rebut-Lallia;
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Name Default (units) Symbol Eq. or Sec. # Description
otherwise) constant =tauth

ncig 1 Sec. 3.1 determines nature of performance calculation,

= 0) calculatesMI and�ig;
otherwise) solves forc�

nform 101 Sec. 2.2 number of elements in radial profile (form factor)
arrays

nmurak 2 Sec. 3.1 determines formula for limiting density,

= 1) Hugill limit;

= 2) Greenwald limit;

= 3) JET limit;

= 4) specify usingdenmax;
otherwise) calculateshnei usingnpwr

noptm 0 Sec. 3.1 optimization switch,

= 0) carry out to calculate performance at
intersection of limits;
otherwise) search along limiting boundary
to find hnei andhT idw yielding maximum
performance

npswtc 1 Sec. 2.4 = 0) �E is expressed as a function ofWtot;
otherwise) �E is expressed as a function ofPin

npwr 1 Sec. 3.1 specifies form of limiting power,
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Name Default (units) Symbol Eq. or Sec. # Description

= 1) limits hnei or hT idw so thatP� � xpalmx;

= 2) specifies maximum temperature
via tkvmax (only if1 � nmurak � 4);

= 3) limits hnei or hT idw so that

P� + Paux � xpalmx;

= 4) limits hnei or hT idw so that

P� + Paux + POH � xpalmx;

= 5) limits hnei or hT idw so that

P� + Paux + POH � Prad � xpalmx;
otherwise) limits hnei or hT idw by �max

nsctor 999 Sec. 2.1 number of sectors used in calculation ofA andV

q95 3.2 q95 Sec. 2.1 specified MHD safety factor at95% flux surface
refl 0.9 R Eq. (28) synchrotron radiation reflectivity of wall
resnc 2.5 
NC Eq. (24) neoclassical resistivity correction
rmajor 2.59 (m) R Eq. (4) plasma major radius
rminor 0.795 (m) a Eq. (4) plasma minor radius
rnane 0.0 nHe=ne Sec. 2.5 ratio of helium to electron density
rndndt 0.5 nD

nD+nT

Sec. 2.5 ratio of deuterium to deuterium plus
tritium density

tauth 0.5 (s) �th Sec. 2.4 constant confinement time for use
with ltaue(i) = 7
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Name Default (units) Symbol Eq. or Sec. # Description

tkvmax 10.0 (keV) Sec. 3.1 maximumhT idw

txp(j) — tj Eq. (42) externally specified exponents for use
with ltaue(i) = 8,

txp(1) 0.0 overall constant;
txp(2) 0.0 exponent onAi;
txp(3) 0.0 exponent on�;
txp(4) 0.0 exponent onIp=106;
txp(5) 0.0 exponent onne=1019;
txp(6) 0.0 exponent onBT ;
txp(7) 0.0 exponent ona;
txp(8) 0.0 exponent onR;
txp(9) 0.0 exponent onPin=106

xdmix1 0.0 Eq. (13) determinesrmix=a for the density profile,

� 0) rmix=a = xdmix1;
otherwise) rmix=a = 0:27 + 1=q95 (Ref. 40)

xmi 1.0 MI Eq. (72) desired value ofMI in solving forc�

xpalmx 1� 108 W Sec. 3.1 maximum alpha or heating power
xptaue -2.0 x� Eq. (32) exponent for combining confinement scalings
xtmix1 0.0 Eq. (13) determinesrmix=a for the temperature profile,

� 0) rmix=a = xdmix1;
otherwise) rmix=a = 0:27 + 1=q95 (Ref. 40)
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Name Default (units) Symbol Eq. or Sec. # Description

xtring 0.35 Æ Eq. (4) plasma triangularity
xzeff 1.65 Zeff Eq. (53) effective ion charge
xzimp 6.0 Z Sec. 2.5 impurity charge
ydedg1 0.0 Eq. (13) density pedestal at edgenedge=n0

ytedg1 0.0 Eq. (13) temperature pedestal at edgeTedge=T0
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Name Default (units) Symbol Eq. or Sec. # Description
abtor(i) — (T) BT (t) Sec. 3.2 plasma current at timetibk(i) , i � ntibk

abtor(1) btor � zztf2

abtor(2) btor � zztf4

abtor(3) btor

abtor(4) btor

abtor(5) btor � zztf3

actaue(i,j) c�j ;ss c�j(t) Sec. 3.2 confinement time multipliers (j = 1; 2) at
time ttbk(i) , i � nttbk

acurnt(i) — (A) Ip(t) Sec. 3.2 plasma current at timetibk(i) , i � ntibk

acurnt(1) 0.0
acurnt(2) Ip;ss

tnull

tramp

acurnt(3) Ip;ss

acurnt(4) Ip;ss

acurnt(5) 0.0
adenav(i) — hnei

hneift
(t) Sec. 3.2 relative (todenflt ) average electron density

at timetnbk(i) , i � ntnbk

adenav(1) 0.0
adenav(2) 1.0
adenav(3) 1.0
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Name Default (units) Symbol Eq. or Sec. # Description
adenav(4) 0.0
aelong(i) — �(t) Sec. 3.2 elongation at timetbk(i) , i � ntbk

aelong(1) 1.0
aelong(2) 0:7 � elong

aelong(3) elong
aelong(4) elong
aelong(5) 1.0
apaux(i) 0.0 Paux

Paux;max
(t) Sec. 3.2 relative (toxpaumx ) auxiliary power at

time tpbk(i) , i � ntpbk

aqcyl(i) 0.0 Sec. 3.2 cylindrical safety factor at timetbk(i) , i � ntbk

armaj(i)

rmajor+ rminor

� armin(i)

R(t) Sec. 3.2 major radius at timetbk(i) , i � ntbk

armin(i) — (m) a(t) Sec. 3.2 minor radius at timetbk(i) , i � ntbk

armin(1) 0.0
armin(2) rminor
armin(3) rminor
armin(4) rminor
armin(5) 0.0
arnane(i) rnane nHe

ne
(t) Sec. 3.2 helium ash concentration at timetnbk(i) ,

i � ntnbk

atauth(i) tauth (s) �th(t) Sec. 3.2 specified energy confinement time at
time ttbk(i) , i � nttbk
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Name Default (units) Symbol Eq. or Sec. # Description

atring(i) — Æ(t) Sec. 3.2 triangularity at timetbk(i) , i � ntbk

atring(1) 0.0
atring(2) 0:2 � xtring

atring(i) xtring
atring(i) xtring
atring(i) 0.0
azeff(i) xzeff Zeff (t) Sec. 3.2 effective ion charge at timetnbk(i) , i � ntnbk

cash 0.0 Cash Eq. (3) multiplier on source and sink indNHe=dt equation
denflt hneiss (m�3) hneift Sec. 3.2 maximum volume-averaged density
dtout 0.2 (s) Sec. 3.2 length of output time-steps
nfdbak — Sec. 3.2 determines feedback mode;

npwr� 2 if 3 � npwr � 5,
0 otherwise;

= 1 ) Paux + P� � Pin;max;

= 2 ) Paux + P� + POH � Pin;max;

= 3 ) Paux + P� + POH � Prad � Pin;max;
otherwise) no feedback

nfindp 0 Sec. 3.2 determines nature of time-dependent calculation,

= 0 ) calculatesWtot(t);
otherwise) solve forxpaumx required to
reachwtotf
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Name Default (units) Symbol Eq. or Sec. # Description

ntbk 5 Sec. 3.2 number of breakpoints intbk
ntibk 5 Sec. 3.2 number of breakpoints intibk
ntnbk 4 Sec. 3.2 number of breakpoints intnbk
ntpbk 0 Sec. 3.2 number of breakpoints intpbk
nttbk 2 Sec. 3.2 number of breakpoints inttbk
tauphe 106 (s) �p;He Eq. (3) helium ash particle confinement time
tbk(i) — (s) Sec. 3.2 time breakpoint array for plasma shape,
tbk(1) 0.0 i � ntbk

tbk(2) 1.5
tbk(3) tramp
tbk(4) tbk(3) + tburn
tbk(5) tbk(4) + tdump

tfinal tramp + tburn (s) tf Sec. 3.2 time at which integration is to end
tibk(i) — (s) Sec. 3.2 time breakpoint array for fields,i � ntibk

tibk(1) 0.0
tibk(2) tnull
tibk(3) tramp
tibk(4) tibk(3) + tburn

tibk(5) tibk(4) + tdump

tinit 1.5 (s) tinit Sec. 3.2 time at which integration is to begin
tkvini 2.0 (keV) Sec. 3.2 initial temperature of plasma
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Name Default (units) Symbol Eq. or Sec. # Description

tnbk(i) — (s) Sec. 3.2 time breakpoint array for plasma density,
tnbk(1) 0.0 i � ntnbk

tnbk(2) tnbk(1) + tramp

tnbk(3) tnbk(2) + tburn

tnbk(4) tnbk(3) + tdump

tpbk(i) — (s) Sec. 3.2 time breakpoint array for auxiliary power,

i � ntpbk

ttbk(i) — (s) Sec. 3.2 time breakpoint array for confinement
parameters,i � nttbk

ttbk(1) 0.0

ttbk(2)

tramp+ tburn

+ tdump

wtotf Wtot;ss (J) Wtot;f Sec. 3.2 plasma energy to be reached attfinal
xnhein 0.0 NHe;0 Eq. (3) initial number of helium ash particles
xpaumx 10.0 (MW) Paux;max Sec. 3.2 maximum value to be attained byPaux

xpinmx — (MW) Pin;max Sec. 3.2 maximum input power allowed during feedback;

xpalmx

106

+ 0:3 if 3 � npwr � 5,
0 otherwise
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